Commentary: “Comparison of spike parameters from optically identified GABAergic and glutamatergic neurons in sparse cortical cultures”
نویسندگان
چکیده
Citation: Becchetti A and Wanke E (2015) Commentary: " Comparison of spike parameters from optically identified GABAergic and glutamatergic neurons in sparse cortical cultures. " Because of the increasing use of multi-site extracellular recording from neuronal networks, it would be extremely useful to determine reliable ways to distinguish with this method the main neuronal populations in vivo as well as in vitro. In a recent paper, Weir et al. (2015) studied the problem of correctly distinguishing the activity of GABAergic and glutamatergic neurons by multi-electrode array (MEA) recording, in primary neuronal cultures. Because we recently addressed the same problem, obtaining different results (Becchetti et al., 2012), we wish to discuss the main experimental differences between these papers. Discussing the possible reasons underlying the observed discrepancies should be instructive for the researchers attempting to establish culture conditions that approximate the in vivo situation. In both studies, the GAD67-GFP knock-in mouse (Tamamaki et al., 2003) was used to unequivocally identify GABAergic cells. Waveform analysis led to the conclusion that spike width-based criteria are insufficient to reliably assign the recorded units to GABAergic or glutamatergic cells. However, Weir et al. (2015) did not observe significant electrophysiological differences between these neuronal populations, whereas Becchetti et al. (2012) found that some statistics systematically varied between inhibitory (i.e., GAD67+) and excitatory neurons, particularly the Fano factor (FF; the ratio between spike-count variance and mean). Presumably, the discrepancy arises because of the very different experimental conditions applied in the two studies. In order to precisely attribute the spike waveforms to identified GFP+ or GFP− neurons, Weir et al. (2015) chose to plate the cells at the lowest density compatible with viability of neocortical cultures, which caused a low rate of network growth. Moreover, for MEA recording, cells were transferred to artificial cerebrospinal fluid, thus removing the cell-conditioned medium that is rich in regulating factors released by neurons as well as glial cells. According to our experience , these alterations cause not only a low-activity starting point, but also a long-lasting perturbation of the steady-state network activity. In fact, Weir et al. (2015) report an average GABAergic cell density of 115 neurons/mm 2 to be compared with 434 in our conditions and the values reported for brain slices obtained from GAD67-GFP mice. For instance, cell counts approximately twice as
منابع مشابه
Response: “Commentary: Comparison of spike parameters from optically identified GABAergic and glutamatergic neurons in sparse cortical cultures”
HJ and Sinning A (2015) Response: " Commentary: Comparison of spike parameters from optically identified GABAergic and glutamatergic neurons in sparse cortical cultures. " We are pleased to note that our publication " Comparison of spike parameters from optically identified GABAergic and glutamatergic neurons in sparse cortical cultures " by Weir et al. (2015) raised some discussion on the feas...
متن کاملComparison of spike parameters from optically identified GABAergic and glutamatergic neurons in sparse cortical cultures
Primary neuronal cultures share many typical features with the in vivo situation, including similarities in distinct electrical activity patterns and synaptic network interactions. Here, we use multi-electrode array (MEA) recordings from spontaneously active cultures of wildtype and glutamic acid decarboxylase 67 (GAD67)-green fluorescent protein (GFP) transgenic mice to evaluate which spike pa...
متن کاملRhythmically discharging basal forebrain units comprise cholinergic, GABAergic, and putative glutamatergic cells.
The basal forebrain plays important roles in arousal, learning, and memory by stimulating cortical activation characterized by rhythmic slow theta and high-frequency beta-gamma activities. Although cholinergic neurons play a significant part in these roles, other, including GABAergic, neurons appear to contribute. Using juxtacellular labeling with neurobiotin of neurons recorded within the magn...
متن کاملQuantal Glutamate Release Is Essential for Reliable Neuronal Encodings in Cerebral Networks
BACKGROUND The neurons and synapses work coordinately to program the brain codes of controlling cognition and behaviors. Spike patterns at the presynaptic neurons regulate synaptic transmission. The quantitative regulations of synapse dynamics in spike encoding at the postsynaptic neurons remain unclear. METHODOLOGY/PRINCIPAL FINDINGS With dual whole-cell recordings at synapse-paired cells in...
متن کاملSepto-Hippocampo-Septal Loop and Memory Formation
The Cholinergic and GABAergic .bers of the medial septal/diagonal band of Broca (MS/DB) area project to the hippocampus and constitute the septo-hippocampal pathway, which has been proven to play a role in learning and memory. In addition, the hippocampus has bidirectional connections with the septum so that to self-regulate of cholinergic input. The activity of septal and hippocampal neuron...
متن کامل